Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.305
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612684

RESUMO

The variability in mortality in sepsis could be a consequence of genetic variability. The glucocorticoid system and the intermediate TSC22D3 gene product-glucocorticoid-induced leucine zipper-are clinically relevant in sepsis, which is why this study aimed to clarify whether TSC22D3 gene polymorphisms contribute to the variance in sepsis mortality. Blood samples for DNA extraction were obtained from 455 patients with a sepsis diagnosis according to the Sepsis-III criteria and from 73 control subjects. A SNP TaqMan assay was used to detect single-nucleotide polymorphisms (SNPs) in the TSC22D3 gene. Statistical and graphical analyses were performed using the SPSS Statistics and GraphPad Prism software. C-allele carriers of rs3747406 have a 2.07-fold higher mortality rate when the sequential organ failure assessment (SOFA) score is higher than eight. In a multivariate COX regression model, the SNP rs3747406 with a SOFA score ≥ 8 was found to be an independent risk factor for 30-day survival in sepsis. The HR was calculated to be 2.12, with a p-value of 0.011. The wild-type allele was present in four out of six SNPs in our cohort. The promoter of TSC22D3 was found to be highly conserved. However, we discovered that the C-allele of rs3747406 poses a risk for sepsis mortality for SOFA Scores higher than 6.


Assuntos
Escores de Disfunção Orgânica , Sepse , Humanos , Glucocorticoides , Zíper de Leucina , Polimorfismo de Nucleotídeo Único , Sepse/genética
2.
Sci Rep ; 14(1): 8467, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605099

RESUMO

Sepsis is recognized as a major contributor to the global disease burden, but there is a lack of specific and effective therapeutic agents. Utilizing Mendelian randomization (MR) methods alongside evidence of causal genetics presents a chance to discover novel targets for therapeutic intervention. MR approach was employed to investigate potential drug targets for sepsis. Pooled statistics from IEU-B-4980 comprising 11,643 cases and 474,841 controls were initially utilized, and the findings were subsequently replicated in the IEU-B-69 (10,154 cases and 454,764 controls). Causal associations were then validated through colocalization. Furthermore, a range of sensitivity analyses, including MR-Egger intercept tests and Cochran's Q tests, were conducted to evaluate the outcomes of the MR analyses. Three drug targets (PSMA4, IFNAR2, and LY9) exhibited noteworthy MR outcomes in two separate datasets. Notably, PSMA4 demonstrated not only an elevated susceptibility to sepsis (OR 1.32, 95% CI 1.20-1.45, p = 1.66E-08) but also exhibited a robust colocalization with sepsis (PPH4 = 0.74). According to the present MR analysis, PSMA4 emerges as a highly encouraging pharmaceutical target for addressing sepsis. Suppression of PSMA4 could potentially decrease the likelihood of sepsis.


Assuntos
Análise da Randomização Mendeliana , Sepse , Humanos , Sepse/tratamento farmacológico , Sepse/genética , Sistemas de Liberação de Medicamentos , Carga Global da Doença , Nonoxinol , Estudo de Associação Genômica Ampla
3.
Front Immunol ; 15: 1374787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601150

RESUMO

Background: Acute pancreatitis (AP) is a severe digestive system disorder with a significant risk of progressing to sepsis, a major cause of mortality. Unraveling the immunological pathways in AP is essential for developing effective treatments, particularly understanding the role of specific immune cell traits in this progression. Methods: Employing a bidirectional two-sample Mendelian Randomization (MR) approach, this study first examined the causal relationship between AP and 731 immune cell traits to identify those significantly associated with AP. Subsequently, we explored the causal associations between 731 immune cell traits and sepsis. The analysis utilized extensive genome-wide association studies (GWAS) summary datasets, with a focus on identifying common immune cell traits with statistically significant causal associations between AP and sepsis. Results: Our investigation identified 44 immune cell traits unidirectionally associated with AP and 36 traits unidirectionally associated with sepsis. Among these, CD127 on CD28+ CD45RA- CD8+ T cells emerged as a common mediator, accounting for 5.296% of the increased risk of sepsis in AP patients. This finding highlights the significant role of specific memory CD8+ T cells in the pathophysiology of AP and its progression to sepsis. Conclusion: This study elucidates the critical role of specific immune cell traits, particularly CD127hi memory CD8+ T cells, in the progression of AP to sepsis. Our findings provide a foundation for future research into targeted immune-modulatory therapies, potentially improving patient outcomes in AP-related sepsis and offering new insights into the complex immunological dynamics of this condition.


Assuntos
Pancreatite , Sepse , Humanos , Pancreatite/genética , Linfócitos T CD8-Positivos , Doença Aguda , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sepse/genética
4.
Front Endocrinol (Lausanne) ; 15: 1348248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586450

RESUMO

Background: The causal association between thyroid dysfunction (including hyperthyroidism and hypothyroidism) and sepsis is controversial in previous studies. Therefore, we used Mendelian randomization (MR) to explore the causal association between hyperthyroidism or hypothyroidism and the susceptibility to four distinct subtypes of sepsis (streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis). Methods: In our research, we conducted two-sample Mendelian randomization (MR) analyses utilizing publicly available genome-wide association studies (GWAS) data from Sakaue et al. and the Finnish database to investigate the potential causal associations between hyperthyroidism, hypothyroidism, and each of the four distinct subtypes of sepsis, in addition to reverse MR analyses of the positive results to examine the existence of reverse causality. Results: Genetic hypothyroidism was causally related to the development of asthma-associated pneumonia or sepsis (ORIVW: 1.097, 95% CI: 1.024 to 1.174, P = 0.008); hypothyroidism was significantly associated with the development of other sepsis (ORIVW: 1.070, 95% CI: 1.028 to 1.115, P < 0.001). In addition, sensitivity analysis substantiated the robustness of these two MR findings, with no evidence of horizontal pleiotropy observed (P > 0.05). MR Egger regression analysis demonstrated no heterogeneity between instrumental variables (IVs). Inverse MR results confirmed no reverse causality between hypothyroidism and asthma-associated pneumonia or sepsis, or between hypothyroidism and other sepsis. The findings of this study also unveiled that there is no evidence of a causal link between hypothyroidism and the development of streptococcal sepsis or puerperal sepsis. Additionally, the research provided evidence indicating the absence of a causal relationship between hyperthyroidism and streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis. Conclusions: This study identified a causal link between hypothyroidism and the occurrence of asthma-associated pneumonia or sepsis, and other sepsis, but not with the development of streptococcal sepsis and puerperal sepsis. Moreover, our findings did not reveal any causal association between hyperthyroidism and streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis.


Assuntos
Asma , Hipertireoidismo , Hipotireoidismo , Pneumonia , Sepse , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sepse/complicações , Sepse/genética , Asma/complicações , Asma/genética
5.
Int J Med Sci ; 21(4): 714-724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464839

RESUMO

Sepsis-induced cardiomyopathy (SIC) represents a severe complication of systemic infection, characterized by significant cardiac dysfunction. This study examines the role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Inverted Formin 2 (INF2) in the pathogenesis of SIC, focusing on their impact on mitochondrial homeostasis and dynamics. Our research demonstrates that silencing DNA-PKcs alleviates lipopolysaccharide (LPS)-induced cardiomyocyte death and dysfunction. Using HL-1 cardiomyocytes treated with LPS, we observed that DNA-PKcs knockdown notably reverses LPS-induced cytotoxicity, indicating a protective role against cellular damage. This effect is further substantiated by the reduction in caspase-3 and caspase-9 activation, key markers of apoptosis, upon DNA-PKcs knockdown. Besides, our data further reveal that DNA-PKcs knockdown attenuates LPS-induced mitochondrial dysfunction, evidenced by improved ATP production, enhanced activities of mitochondrial respiratory complexes, and preserved mitochondrial membrane potential. Moreover, DNA-PKcs deletion counteracts LPS-induced shifts towards mitochondrial fission, indicating its regulatory influence on mitochondrial dynamics. Conclusively, our research elucidates the intricate interplay between DNA-PKcs and INF2 in the modulation of mitochondrial function and dynamics during sepsis-induced cardiomyopathy. These findings offer new insights into the molecular mechanisms underpinning SIC and suggest potential therapeutic targets for mitigating mitochondrial dysfunction in this critical condition.


Assuntos
Cardiomiopatias , Doenças Mitocondriais , Sepse , Humanos , Proteína Quinase Ativada por DNA/metabolismo , Dinâmica Mitocondrial , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Domínio Catalítico , Cardiomiopatias/genética , Miócitos Cardíacos , Sepse/complicações , Sepse/genética , Doenças Mitocondriais/patologia , DNA/efeitos adversos , DNA/metabolismo
6.
Mol Cell Probes ; 74: 101954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452956

RESUMO

Sepsis as a severe systemic inflammation leads oftentimes to organ dysfunction and subsequently to death. In polytrauma patients, septic complications represent with 45% the predominant cause of late death and are responsible for extremely high costs in the healthcare system. Therefore, clinicians have to detect as early as possible the begin of sepsis to improve the patient's outcome. One new promising diagnostic tool to diagnose septic complications in polytraumatized patients are exosomes. Plasma samples from polytraumatized patients (Injury Severity Score (ISS) ≥16) which developed sepsis (n = 10) and without sepsis (n = 10), were collected at emergency room (ER), 24h and 5 days after trauma. The EVs subpopulations were investigated by a bead-based multiplex flow cytometry measurement of surface epitopes and were compared with plasma EVs from healthy controls (n = 10). Moreover, exosomal cytokine concentrations were measured via high-sensitive ELISA and were correlated with systemic concentrations. For miRNA cargo analysis, we analysed the miRNAs miR-1298-5p, miR-1262, miR-125b-5p, miR-92a-3p, miR-93-5p, miR-155-5p and miR-21-5p and compared their exosomal concentrations by means of RT-qPCR. CD62p + exosomes were significantly increased in septic polytrauma-patients (p ≤ 0.05), while CD40+exosomes, as well as CD49e + exosomes were diminished (p ≤ 0.05). Furthermore, we observed that the exosomal IL-6 concentration reflects the systemic IL-6 concentration (r2 = 0.63) and did not significantly alter between patients with and without sepsis. The exosomal IL-10 concentration seemed to be constant in all patients and healthy controls. We observed that a decrease of miR-21-5p in exosomes was associated with the development of sepsis (p ≤ 0.05), while exosomal miR-93-5p, miR-155-5p and miR-92a-3p were not specifically altered in septic patients. Taken together, the present study in polytraumatized patients demonstrated that the development of sepsis is associated with an increase of CD62p + exosomes. Furthermore, the exosomal cargo was changed in septic patients: miR-21-5p was diminished.


Assuntos
Exossomos , MicroRNAs , Traumatismo Múltiplo , Sepse , Humanos , Exossomos/genética , Interleucina-6 , MicroRNAs/genética , Sepse/complicações , Sepse/genética , Traumatismo Múltiplo/complicações
7.
Lancet Child Adolesc Health ; 8(5): 325-338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513681

RESUMO

BACKGROUND: Sepsis is defined as dysregulated host response to infection that leads to life-threatening organ dysfunction. Biomarkers characterising the dysregulated host response in sepsis are lacking. We aimed to develop host gene expression signatures to predict organ dysfunction in children with bacterial or viral infection. METHODS: This cohort study was done in emergency departments and intensive care units of four hospitals in Queensland, Australia, and recruited children aged 1 month to 17 years who, upon admission, underwent a diagnostic test, including blood cultures, for suspected sepsis. Whole-blood RNA sequencing of blood was performed with Illumina NovaSeq (San Diego, CA, USA). Samples with completed phenotyping, monitoring, and RNA extraction by March 31, 2020, were included in the discovery cohort; samples collected or completed thereafter and by Oct 27, 2021, constituted the Rapid Paediatric Infection Diagnosis in Sepsis (RAPIDS) internal validation cohort. An external validation cohort was assembled from RNA sequencing gene expression count data from the observational European Childhood Life-threatening Infectious Disease Study (EUCLIDS), which recruited children with severe infection in nine European countries between 2012 and 2016. Feature selection approaches were applied to derive novel gene signatures for disease class (bacterial vs viral infection) and disease severity (presence vs absence of organ dysfunction 24 h post-sampling). The primary endpoint was the presence of organ dysfunction 24 h after blood sampling in the presence of confirmed bacterial versus viral infection. Gene signature performance is reported as area under the receiver operating characteristic curves (AUCs) and 95% CI. FINDINGS: Between Sept 25, 2017, and Oct 27, 2021, 907 patients were enrolled. Blood samples from 595 patients were included in the discovery cohort, and samples from 312 children were included in the RAPIDS validation cohort. We derived a ten-gene disease class signature that achieved an AUC of 94·1% (95% CI 90·6-97·7) in distinguishing bacterial from viral infections in the RAPIDS validation cohort. A ten-gene disease severity signature achieved an AUC of 82·2% (95% CI 76·3-88·1) in predicting organ dysfunction within 24 h of sampling in the RAPIDS validation cohort. Used in tandem, the disease class and disease severity signatures predicted organ dysfunction within 24 h of sampling with an AUC of 90·5% (95% CI 83·3-97·6) for patients with predicted bacterial infection and 94·7% (87·8-100·0) for patients with predicted viral infection. In the external EUCLIDS validation dataset (n=362), the disease class and disease severity predicted organ dysfunction at time of sampling with an AUC of 70·1% (95% CI 44·1-96·2) for patients with predicted bacterial infection and 69·6% (53·1-86·0) for patients with predicted viral infection. INTERPRETATION: In children evaluated for sepsis, novel host transcriptomic signatures specific for bacterial and viral infection can identify dysregulated host response leading to organ dysfunction. FUNDING: Australian Government Medical Research Future Fund Genomic Health Futures Mission, Children's Hospital Foundation Queensland, Brisbane Diamantina Health Partners, Emergency Medicine Foundation, Gold Coast Hospital Foundation, Far North Queensland Foundation, Townsville Hospital and Health Services SERTA Grant, and Australian Infectious Diseases Research Centre.


Assuntos
Infecções Bacterianas , Sepse , Viroses , Humanos , Criança , Estudos de Coortes , Transcriptoma , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/genética , Estudos Prospectivos , Austrália , Sepse/diagnóstico , Sepse/genética
8.
Shock ; 61(4): 577-584, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517244

RESUMO

ABSTRACT: Objective: The role of immune cells in sepsis remains unclear, and there is some controversy. Here, we aim to systematically assess whether distinct immune cell phenotypes impact the susceptibility to sepsis. Methods: In this study, we harnessed publicly available summary-level data from genome-wide association studies (GWASs). The selection of genetic variations strongly associated with 731 phenotypes of circulating immune cells served as instrumental variables (IVs). Using a two-sample Mendelian randomization (MR) analysis, we investigated the relationships between different immunophenotypes and the occurrence of sepsis, as well as the 28-day mortality. The MR study utilized the inverse variance weighting (IVW) method as the main analytical approach. In addition, we incorporated four other MR methods for supplementary causal inference, including weighted median (WME), MR-Egger regression, simple mode, and weighted mode. Furthermore, the robustness of the results was affirmed through multiple sensitivity analyses. Results: The results of the IVW method indicated that a total of 36 immunophenotypes are associated with the risk of sepsis. We also identified 34 immunophenotypes with a causal association with the 28-day mortality. Interestingly, before multiple testing corrections, 11 immunophenotypes were determined to have consistent causal relationships with both the occurrence of sepsis and the 28-day mortality. Notably, after false discovery rate (FDR) correction, four immunophenotypes were found to be significantly correlated with susceptibility to sepsis: CD45RA- CD4+ %CD4+ (odds ratio [OR], 1.355; 95% confidence interval [CI], 1.139~1.611; P < 0.001, PFDR = 0.192), HLA DR on HLA DR+ NK (OR, 0.818; 95% CI, 0.726~0.922; P = 0.001, PFDR = 0.192), IgD+ CD24+ %B cell (OR, 0.626; 95% CI, 0.473~0.828; P = 0.001, PFDR = 0.192), and TD DN (CD4- CD8-) AC (OR, 0.655; 95% CI, 0.510~0.840; P < 0.001, PFDR = 0.192). Following FDR correction, only one immunophenotype was confirmed to be negatively correlated with the 28-day mortality: CD39 on CD39+ CD8br (OR, 0.820; 95% CI, 0.737~0.912; P < 0.001, PFDR = 0.184). Conclusion: This study, for the first time, has uncovered indicative evidence of a causal relationship between circulating immune cell phenotypes and varying degrees of sepsis through genetic means. These findings underscore the significance of immune cells in the pathogenesis of sepsis.


Assuntos
Estudo de Associação Genômica Ampla , Sepse , Humanos , Análise da Randomização Mendeliana , Sepse/genética , Fenótipo , Antígenos HLA-DR
9.
Clin Immunol ; 262: 110175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460893

RESUMO

Recognizing immune dysregulation as a hallmark of sepsis pathophysiology, leukocytes have attracted major attention of investigation. While adult and pediatric sepsis are clinically distinct, their immunological delineation remains limited. Single cell technologies facilitated the characterization of immune signatures. We tackled to delineate immunological profiles of pediatric sepsis at a single-cell level by analyzing blood samples from six septic children, at both acute and recovery phases, and four healthy children. 16 single-cell transcriptomic datasets were analyzed and compared to adult sepsis dataset. We showed a unique shift in neutrophil subpopulations and functions between acute and recovery phases, along with the regulatory role of resistin. Neutrophil signatures were comparable between adult and pediatric sepsis. Innate-like CD4 T cells were predominantly and uniquely observed in acute phase of pediatric sepsis. Our study serves as a rich source of information about the phenotypic diversity and trajectory of circulating immune cells during pediatric sepsis.


Assuntos
Sepse , Adulto , Humanos , Criança , Sepse/genética , Linfócitos T CD4-Positivos , Transcriptoma , Perfilação da Expressão Gênica , Neutrófilos
10.
Int J Med Sci ; 21(4): 633-643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464826

RESUMO

Sepsis induces profound disruptions in cellular homeostasis, particularly impacting mitochondrial function in cardiovascular and cerebrovascular systems. This study elucidates the regulatory role of the Pyruvate Kinase M2 (PKM2)- Prohibitin 2 (PHB2) axis in mitochondrial quality control during septic challenges and its protective effects against myocardial and cerebral injuries. Employing LPS-induced mouse models, we demonstrate a significant downregulation of PKM2 and PHB2 in both heart and brain tissues post-sepsis, with corresponding impairments in mitochondrial dynamics, including fission, fusion, and mitophagy. Overexpression of PKM2 and PHB2 not only restores mitochondrial function, as evidenced by normalized ATP production and membrane potential but also confers resistance to oxidative stress by mitigating reactive oxygen species generation. These cellular mechanisms translate into substantial in vivo benefits, with transgenic mice overexpressing PKM2 or PHB2 displaying remarkable resistance to sepsis-induced cardiomyocyte and neuronal apoptosis, and organ dysfunction. Our findings highlight the PKM2-PHB2 interaction as a novel therapeutic target for sepsis, providing a foundation for future research into mitochondrial-based interventions to treat this condition. The study's insights into the molecular underpinnings of sepsis-induced organ failure pave the way for potential clinical applications in the management of sepsis and related pathologies.


Assuntos
Mitocôndrias , Sepse , Animais , Camundongos , Apoptose/genética , Miócitos Cardíacos , Estresse Oxidativo , Sepse/complicações , Sepse/genética
11.
Genomics ; 116(2): 110814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432499

RESUMO

Lactate is a glycolysis end product, and its levels are markedly associated with disease severity, morbidity, and mortality in sepsis. It modulates key functions of immune cells, including macrophages. In this investigation, transcriptomic analysis was performed using lactic acid, sodium lactate, and hydrochloric acid-stimulated mouse bone marrow-derived macrophages (iBMDM), respectively, to identify lactate-associated signaling pathways. After 24 h of stimulation, 896 differentially expressed genes (DEG) indicated were up-regulation, whereas 792 were down-regulated in the lactic acid group, in the sodium lactate group, 128 DEG were up-regulated, and 41 were down-regulated, and in the hydrochloric acid group, 499 DEG were up-regulated, and 285 were down-regulated. Subsequently, clinical samples were used to further verify the eight genes with significant differences, among which Tssk6, Ypel4, Elovl3, Trp53inp1, and Cfp were differentially expressed in patients with high lactic acid, indicating their possible involvement in lactic acid-induced inflammation and various physiological diseases caused by sepsis. However, elongation of very long chain fatty acids protein 3 (Elovl3) was negatively correlated with lactic acid content in patients. The results of this study provide a necessary reference for better understanding the transcriptomic changes caused by lactic acid and explain the potential role of high lactic acid in the regulation of macrophages in sepsis.


Assuntos
Ácido Láctico , Sepse , Animais , Camundongos , Humanos , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactato de Sódio , RNA Mensageiro , Ácido Clorídrico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo
12.
Comput Biol Med ; 171: 108222, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447501

RESUMO

BACKGROUND: Sepsis, characterized by systemic inflammatory response syndrome and life-threatening organ dysfunction, remains a significant global cause of disability and death. Despite its impact, reliable biomarkers for sepsis diagnosis are yet to be identified. OBJECTIVE: This study aims to investigate and identify key genes and pathways in sepsis through the analysis of multiple microarray datasets, providing potential treatment targets for future clinical trials. METHODS: Two independent gene expression profiles (GSE54514 and GSE69528) were downloaded from the Gene Expression Omnibus (GEO) database. After merging and batch normalization, differentially expressed genes (DEGs) were obtained using the "limma" package. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were performed using "R" software. A Protein-Protein Interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING). The top 10 hub genes were identified using Cytoscape. A Nomogram model for predicting sepsis occurrence was constructed and evaluated. RESULTS: Bioinformatic analysis of 210 sepsis and 91 control blood samples identified 72 DEGs. GO analyses revealed associations with immune response processes. GSEA indicated involvement in key signaling pathways. S100A12, MMP9, and PRTN3 were identified as independent risk factors for sepsis. CONCLUSION: This study unveils critical genes and pathways in sepsis through bioinformatic methods. S100A12, MMP9, and PRTN3 may play essential roles in the immune response to infection, influencing sepsis prognosis.


Assuntos
Perfilação da Expressão Gênica , Sepse , Humanos , Perfilação da Expressão Gênica/métodos , Proteína S100A12/genética , Metaloproteinase 9 da Matriz/genética , Análise em Microsséries , Sepse/diagnóstico , Sepse/genética , Biologia Computacional/métodos
13.
Free Radic Biol Med ; 215: 64-76, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437927

RESUMO

BACKGROUND: Sepsis-induced cardiomyopathy (SICM) is common complication in septic patients with a high mortality and is characterized by an abnormal inflammation response, which was precisely regulated by endogenous specialized pro-resolving mediators (SPMs). However, the metabolic changes of cardiac SPMs during SICM and the roles of SPMs subset in the development of SICM remain unknown. METHODS: In this work, the SPMs concentration was assessed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) of SICM mice and SICM patients. The cardiac function was measured by echocardiography after the treatment of a SPMs subset, termed Resolvin D2 (RvD2). Caspase-11-/-, GSDMD-/- and double deficient (Caspase-11-/-GSDMD-/-) mice were used to clarify the mechanisms of RvD2 in SICM. RESULTS: We found that endogenous cardiac SPMs were disorders and RvD2 was decreased significantly and correlated with left ventricular ejection fraction (LVEF) and ß-BNP, cTnT in Lipopolysaccharide/Cecum ligation and puncture (CLP) induced SICM models. Treatment with RvD2 attenuated lethality, cardiac dysfunction and cardiomyocytes death during SICM. Mechanistically, RvD2 alleviated SICM via inhibiting Caspase-11/GSDMD-mediated cardiomyocytes pyroptosis. Finally, the plasma levels of RvD2 were also decreased and significantly correlated with IL-1ß, ß-BNP, cTnT and LVEF in patients with SICM. Of note, plasma RvD2 level is indicator of SICM patients from healthy controls or sepsis patients. CONCLUSION: These findings suggest that decreased cardiac RvD2 may involve in the pathogenesis of SICM. In addition, treatment with RvD2 represents a novel therapeutic strategy for SICM by inhibiting cardiomyocytes pyroptosis.


Assuntos
Cardiomiopatias , Ácidos Docosa-Hexaenoicos , Sepse , Humanos , Camundongos , Animais , Piroptose , Cromatografia Líquida , Volume Sistólico , Espectrometria de Massas em Tandem , Função Ventricular Esquerda , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Gasderminas , Proteínas de Ligação a Fosfato/genética
14.
Medicine (Baltimore) ; 103(11): e37519, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489677

RESUMO

Sepsis is a leading cause of mortality in intensive care units. Sepsis is associated with activation of the coagulation cascade and inflammation. The aim of this study was to identify coagulation-related genes in sepsis that may provide translational potential therapeutic targets. The datasets GSE28750, GSE95233, and GSE65682 were downloaded from the gene expression omnibus database. Consensus-weighted gene co-expression network analysis (WGCNA) was used to identify sepsis modules. Gene set enrichment analysis was used to identify genes enriched in the coagulation cascade. The value of hub-gene in immunological analysis was tested in the validation sets (GSE95233). The value of hub-gene in clinical prognosis was tested in the validation sets (GSE65582). One thousand one hundred seventy-six genes with high connectivity in the clinically significant module were identified as hub genes. Ten genes were found to be enriched in coagulation-related signaling pathways. C3AR1 was selected for further analysis. The immune infiltration analysis showed that lower expression of C3AR1 was associated with immune response in sepsis and could be an independent predictor of survival status in sepsis patients. Meanwhile, univariate and multivariate Cox analysis showed that C3AR1 had a significant correlation with survival. C3AR1 may become an effective biomarker for worse outcomes in sepsis patients associated with immune and coagulation cascade.


Assuntos
Inflamação , Sepse , Humanos , Inflamação/genética , Sepse/genética , Coagulação Sanguínea/genética , Consenso , Bases de Dados Factuais , Perfilação da Expressão Gênica , Redes Reguladoras de Genes
15.
Comput Biol Med ; 172: 108256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489989

RESUMO

Sepsis, a life-threatening condition triggered by the body's response to infection, presents a significant global healthcare challenge characterized by disarrayed host responses, widespread inflammation, organ impairment, and heightened mortality rates. This study introduces the ncRS database (http://www.ncrdb.cn), a meticulously curated repository housing 1144 experimentally validated non-coding RNAs (ncRNAs) intricately linked with sepsis. ncRS offers comprehensive RNA data, exhaustive experimental insights, and integrated annotations from diverse databases. This resource empowers researchers and clinicians to decipher ncRNAs' roles in sepsis pathogenesis, potentially identifying vital biomarkers for early diagnosis and prognosis, thus facilitating personalized treatments.


Assuntos
RNA não Traduzido , Sepse , Humanos , RNA não Traduzido/genética , Bases de Dados de Ácidos Nucleicos , Biomarcadores , Sepse/genética
16.
Sci Rep ; 14(1): 5397, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443473

RESUMO

Numerous observational studies have elucidated a connection between leukocyte telomere length (LTL) and sepsis, yet its fundamental cause remains enigmatic. Thus, the current study's objective is to employ a bidirectional Mendelian randomization (MR) approach to scrutinize the causality between LTL and sepsis. We selected single nucleotide polymorphisms (SNPs) associated with LTL (n = 472,174) and sepsis from a genome-wide association study (GWAS), including Sepsis (n = 486,484, ncase = 11,643), Sepsis (28 day death in critical care) (n = 431,365, ncase = 347), Sepsis (under 75) (n = 462,869, ncase = 11,568), Sepsis (28 day death) (n = 486,484, ncase = 1896), and Sepsis (critical care) (n = 431,365, ncase = 1380), as instrumental variables (IVs). The inverse variance weighted (IVW) MR method was employed as the primary approach, and various sensitivity analyses were conducted to assess the validity of this instrument and potential pleiotropy. Using the IVW method, we uncovered a potential causal relationship between genetically predicted LTL reduction and increased susceptibility to sepsis, with an odds ratio (OR) of 1.161 [95% confidence interval (CI) 1.039-1.297, p = 0.008]. However, reverse MR analysis did not indicate any impact of sepsis on LTL. Our forward MR study highlights a potential causal relationship between LTL as an exposure and increased susceptibility to sepsis. Specifically, our findings suggest that individuals with genetically determined shorter LTL may be at an increased risk of developing sepsis. This may contribute to the development of novel diagnostic and therapeutic strategies for the prevention, diagnosis, and treatment of sepsis.


Assuntos
Estudo de Associação Genômica Ampla , Sepse , Humanos , Análise da Randomização Mendeliana , Sepse/genética , Causalidade , Telômero/genética
17.
BMC Nephrol ; 25(1): 79, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443846

RESUMO

BACKGROUND: Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS: In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS: The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION: In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.


Assuntos
Injúria Renal Aguda , MicroRNAs , Nefrite , Sepse , Canais de Cátion TRPM , Humanos , Injúria Renal Aguda/genética , Citocinas , Rim , Lipopolissacarídeos/toxicidade , Luciferases , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , RNA Circular/genética , Sepse/genética
18.
Sci Rep ; 14(1): 5718, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459230

RESUMO

Cardio-metabolic traits have been reported to be associated with the development of sepsis. It is, however, unclear whether these co-morbidities reflect causal associations, shared genetic heritability, or are confounded by environmental factors. We performed three analyses to explore the relationships between cardio-metabolic traits and sepsis. Mendelian randomization (MR) study to evaluate the causal effects of multiple cardio-metabolic traits on sepsis. Global genetic correlation analysis to explore the correlations between cardio-metabolic traits and sepsis. Local genetic correlation (GC) analysis to explore shared genetic heritability between cardio-metabolic traits and sepsis. Some loci were further examined for related genes responsible for the causal relationships. Genetic associations were obtained from the UK Biobank data or published large-scale genome-wide association studies with sample sizes between 200,000 to 750,000. In MR, we found causality between BMI and sepsis (OR: 1.53 [1.4-1.67]; p < 0.001). Body mass index (BMI), which is confirmed by sensitivity analyses and multivariable MR adjusting for confounding factors. Global GC analysis showed a significant correlation between BMI and sepsis (rg = 0.55, p < 0.001). More cardio-metabolic traits were identified to be correlated to the sepsis onset such as CRP (rg = 0.37, p = 0.035), type 2 diabetes (rg = 0.33, p < 0.001), HDL (rg = - 0.41, p < 0.001), and coronary artery disease (rg = 0.43, p < 0.001). Local GC revealed some shared genetic loci responsible for the causality. The top locus 1126 was located at chromosome 7 and comprised genes HIBADH, JAZF1, and CREB5. The present study provides evidence for an independent causal effect of BMI on sepsis. Further detailed analysis of the shared genetic heritability between cardio-metabolic traits and sepsis provides the opportunity to improve the preventive strategies for sepsis.


Assuntos
Diabetes Mellitus Tipo 2 , Sepse , Humanos , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Causalidade , Fenótipo , Sepse/genética , Análise da Randomização Mendeliana
19.
Eur J Med Res ; 29(1): 151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429762

RESUMO

BACKGROUND: Urosepsis is a life-threatening organ disease in which pathogenic microorganisms in the urine enter the blood through the vessels, causing an imbalance in the immune response to infection. The aim of this study was to elucidate the role of testicular orphan receptor 4 (TR4) in urosepsis. METHODS: The role of TR4 in the progression and prognosis of urosepsis was confirmed by analyzing data from online databases and clinical human samples. To mimic urosepsis, we injected E. coli bacteria into the renal pelvis of mice to create a urosepsis model. Hematoxylin and eosin staining was used to observe histopathological changes in urosepsis. The effects of the upregulation or downregulation of TR4 on macrophage pyroptosis were verified in vitro. Chromatin immunoprecipitation assay was used to verify the effect of TR4 on Gasdermin D (GSDMD) transcription. RESULTS: TR4 was more highly expressed in the nonsurviving group than in the surviving group. Furthermore, overexpressing TR4 promoted inflammatory cytokine expression, and knocking down TR4 attenuated inflammatory cytokine expression. Mechanistically, TR4 promoted pyroptosis by regulating the expression of GSDMD in urosepsis. Furthermore, we also found that TR4 knockdown protected mice from urosepsis induced by the E. coli. CONCLUSIONS: TR4 functions as a key regulator of urosepsis by mediating pyroptosis, which regulates GSDMD expression. Targeting TR4 may be a potential strategy for urosepsis treatment.


Assuntos
Líquidos Corporais , Sepse , Animais , Humanos , Camundongos , Citocinas , Amarelo de Eosina-(YS) , Escherichia coli , Gasderminas , Proteínas de Ligação a Fosfato/genética , Sepse/complicações , Sepse/genética
20.
Pol J Microbiol ; 73(1): 49-57, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437468

RESUMO

Gut microbiota (GM) is a crucial underlying player during sepsis pathogenesis. However, the causal relationship is unclear and remains to be determined. A two-sample Mendelian randomization study was implemented. The statistical data about sepsis together with GM summarized from genome-wide association studies were evaluated. Instrumental variables were defined as single-nucleotide polymorphisms with prominent correlations with exposure. The inverse-variance-weighted test was employed as a major approach of Mendelian randomization analysis to estimate of causal relationships. The inverse-variance-weighted analysis results demonstrated that at different taxa levels, Actinobacteria and Bifidobacteriaceae influence sepsis. Actinobacteria had negative relationships to sepsis risk at the phylum (ß = -0.34, SE = 0.10, p = 0.0008) and class (ß = -0.23, SE = 0.07, p = 0.0011) levels in outcome coded ieu-b-69. Actinobacteria at the phylum level (ß = -0.22, SE = 0.10, p = 0.027) was also negatively associated with sepsis in outcome coded ieu-b-4980. Bifidobacteriaceae at the order (ß = -0.20, SE = 0.06, p = 0.0021), family (ß = -0.20, SE = 0.06, p = 0.0021), and genus (ß = -0.20, SE = 0.06, p = 0.0007) levels were all negatively correlated with the risk of sepsis in outcome coded ieu-b-69. The results of the Wald ratio model showed that Tyzzerella genus (OR (95%CI) = 0.6902[0.4907,0.9708], p = 0.0331) and Gastranaerophilales order (OR (95%CI) = 0.5907[0.3516,0.9926], p = 0.0468) were negatively connected with sepsis. This study implied at different taxa levels Actinobacteria and Bifidobacteriaceae, Tyzzerella genus, and Gastranaerophilales order have a causal relationship with sepsis, indicating that they are protective factors for the incidence of sepsis.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Sepse , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Sepse/genética , Actinobacteria/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...